

Resolution

- know the limit and how to achieve it -

Lai Ding BWH NeuroTechnology Studio

Optical Imaging System: use visible light and glass lens to form image

Why a glass lens can form image?

Thin lens image formation

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$
 Magnification $M = \frac{v}{u} = \frac{f}{u - f}$

Want higher magnification? Move object closer to F

Microscope

Early microscopes

Robert Hooke 1635-1703

MICROGRAPHIA:

OR SOME

Physiological Descriptions

OF

MINUTE BODIES

MADE BY

MAGNIFYING GLASSES

WITH

OBSERVATIONS and INQUIRIES thereupon.

By R. HOOKE, Fellow of the ROYAL SOCIETY.

Nonpossi seule quantum contendere Lineus, Non tamen iderres contemnas Lippus immgi. Horac. Ep. lib. t.

LONDON, Printed by Jo. Martyn, and Ja. Alleftry, Printers to the ROXAL SOCIETY, and are to be fold at their Shop at the Bell in S. Fant's Church-yard. M. DC LXV.

flea

fly eye

Hooke named them "cell"

(reminds him of a monk's quarters)

cork slice

Mag 10x -1000x

objective 100x eye piece 10x

Why not more?

Leica DM 600

100 micrometers

10⁻⁴ meters

Useful magnification

Empty magnification

USAF resolution target slide

1951 USAF Resolution Target

C	Fl	I the sound date (out one or)
Group	Element	Linewidth (micron)
0	1	500.00
	2	446.43
	3	396.83
	4	354.61
	5	314.47
	6	284.09
Group 1 Group 6		
7	1	3.91
	2	3.47
	3	3.11
	4	2.76
	5	2.46
	6	2.19
8	1	1.95
	2	1.74
	3	1.55
	4	1.38
	5	1.23
	6	1.10
9	1	0.98
	2	0.87
	3	0.78

Live demo Zeiss LSM710

2.5X/0.12 Zeiss: empty magnification

On USAF slide

Zoom 1 5-6 Zoom 2 6-3 Zoom 4 7-2 Zoom 8 7-3 Zoom 16 7-4 Zoom 32 7-4

Useful Magnification

Useful Magnification

Empty Magnification

Why there is Empty Magnification?

On the image side : a "point" is not a point

Airy disk

Sir George Biddell Airy 1801-1892

Why does the point become a disk?

Diffraction is key to the Point Spread Function (PSF)

Size of the (airy) disk is a function of

D and λ

Longer the λ bigger the disk

PSF size determine the resolution limit

Trends of Telescope

Size MATTERS!!!!

Galileo ~1600 D ~ 5cm

Moon

Hubble 1990 D ~ 2.4m

Herschel Space Telescope

Location: L2 Lagrange point

Launch: 2009

First Observations: 2010

Principal Investigator: European Space Agency Primary Mirror Diameter: 3.5 m

Observed Wavelength Range: 60 to 670 µm

Advanced Technology Solar Telescope (ATST)

Location: Haleakala, Hawaii

Construction: 2009

First Observations: 2016

Principal Investigator: National Solar Observatory

Primary Mirror Diameter: (4.24 m)

Field of View: 5 arcmin

Resolution: 30 km, or $5 \times$ the current state of the art **Observed Wavelength Range:** 300 to 28,000 nm

Large Synoptic Survey Telescope (LSST)

Location: Cerro Pachón, Chile

Construction: Undergoing preliminary design review, though mirror blanks are

under way

First Observations: 2015

Principal Investigator: LSST Corp Primary Mirror Diameter: 8.4 m Field of View: 9.6 degrees square

Observed Wavelength Range: 320 to 1050 nm

European Extremely Large Telescope (E-ELT)

Location: To be determined, likely Chile or

Canary Islands

Construction: Scheduled to begin in 2010

First Observations: 2017

Principal Investigator: European Southern

Observatory

Primary Mirror Diameter: 42 m

Field of View: 10 arcmin diameter

Resolution: 0.001 to 0.6 arcsec

Observed Wavelength Range: Visible to near-IR

Overwhelmingly Large Telescope (OWL)

Location: To be determined, likely Chile or Canary Islands

Construction: Currently in design stage

First Observations: 2020

Principal Investigator: European Southern Observatory

Primary Mirror Diameter 60 or 100 m, spherical

Field of View: 30 arcsec to 10 arcmin

Resolution: 1 milliarcsec

Observed Wavelength Range: 320 to 12,000 nm

Resolution limit

The distance between two points (on object side), which we can barely resolve them as two distinguished disks on image side

$$\delta y = 0.61 \,\lambda / N.A.$$

Definition of N.A.

 $N.A. = n * sin(\alpha)$

Resolution (r) = $0.61 \lambda / N.A.$

Lateral resolution

Resolution(z) = $2 \lambda \cdot n / N.A.^2$

Axial Resolution

air objective n = 1.0

oil objective n = 1.518

Resolution

Objective/ N.A.		х-у	Z
10x/0.3		1000nm	11.4um
25x/0.8	$R_{x-y}=0.61 \lambda /N.A$	400nm	2.4um
40x/1.3	$R_{r}=2 \lambda \cdot n / N.A.^{2}$	234nm	1um
63x/1.4	_	218nm	0.8um
100x/1.4	λ = 500nm	218nm	0.8um

The person who laid the physics foundation of modern optics manufacture.

Cofounder of Zeiss

Ernst Abbe (1840-1905)

"Based on a precise study of the materials used, the designs concerned are specified by computation to the last detail - every curvature, every thickness, every aperture of a lens - so that any trial and error approach is excluded."

Ernst Abbe

VIII.—The Relation of Aperture and Power in the Microscope.*

By Professor Abbe, Hon. F.R.M.S.

[Read 10th May, 1882.)

I.—General Conside ations as to Wide and Narrow Apertures.

The smallest dimensions which are within the reach of a given aperture are indicated with sufficient accuracy by taking the limit of the resolving or separating power of that aperture for periodic or regular structures, i.e. the minimum distance apart at which given elements can be delineated separately with the aperture in question. The numerical expression of that minimum distance is

 $\delta = \frac{1}{2} \frac{\lambda}{a},$

where a denotes the numerical aperture and λ the wave-length of light; a fair average is obtained for the latter element (with observations with the eye and white light), by taking $\lambda = 0.55 \,\mu = 0.00055$ mm.; i. e. the wave-length of green rays between the lines D and E, very near to the point of maximum visual intensity in the diffraction spectrum.

Practical Limit on Magnification

Theoretical limit ~200nm

limit of human eyes ~ 0.15mm (at 25cm distance)

Practical magnification : 0.15mm/200nm = 750x

2.5X/0.12 Objective

Rxy ~ 2.54um

Group 7, Element 4

Group	Element	Linewidth (micron)
0	1	500.00
	2	446.43
	3	396.83
	4	354.61
	5	314.47
	6	284.09
Group 1 Gr	oup 6	
7	1	3.91
	2	3.47
_	3	3.11
	4	2.76
	5	2.46
	6	2.19
8	1	1.95
	2	1.74
	3	1.55
	4	1.38
	5	1.23
	6	1.10
9	1	0.98
	2	0.87
	3	0.78

Resolution

Objective/ N.A.		х-у	Z	
10x/0.3		1000nm	11.4um	
25x/0.8	$R_{x-y}=0.61 \lambda / N.A$	400nm	2.4um	
40x/1.3	$R_{z}=2 \lambda \cdot n / N.A.^{2}$	234nm	1um	
63x/1.4	_	218nm	0.8um	
100x/1.4	λ = 500nm	218nm	0.8um	

The resolution limit of an objective is ONLY dependent on its N.A.

So, 63x/1.4 and 100x/1.4

Which one is better?

The magnification REALLY doesn't matter on resolution?

For Objectives, it does not

But for your "WHOLE" imaging system, it DOES!

CCD based optical imaging system

Live demo CCD based system on USAF slide

4X/0.13 2.35um Group 7 – Element 5

10X/0.3 1.02um Group 8 – Element 6 or Group 9 – Element 1

Resolution on objective N.A.

Group	Element	Linewidth (micron)
0	1	500.00
	2	446.43
	3	396.83
	4	354.61
	5	314.47
	6	284.09
Group 1 Gr	oup 6	
7	1	3.91
	2	3.47
	3	3.11
	4	2.76
	5	2.46
	6	2.19
8	1	1.95
	2	1.74
	3	1.55
	4	1.38
	5	1.23
	6	1.10
9	1	0.98
	2	0.87
	3	0.78

4X

Best guess group 6 – Element 6 4.40um

10X

Best guess group 8 – element 1 1.95um

pixel

Scientific Camera CCD pixel size

Photometric Evolve 16um x 16um

Hamamatsu C9100-02 8um x 8um

Qimaging Retiga-SRV 6.4um x 6.4um

pixel

	-	sample
4x	16um	4um
10x	16um	1.6um
100x	16um	160nm

magnification | pixel size | pixel size on

Sample

objective magnification	CCD pixel size	pixel size on sample	N.A.	resolution
4x	16um	4um	0.13	2.35um
10x	16um	1.6um	0.3	1.02um
100x	16um	160nm	1.4	160nm

CCD pixel size combined with objective N.A. determines the resolution limit of the "WHOLE" imaging system

Actual resolution we achieved ~4.38um (4X) and ~1.95um (10X)

Knowing the resolution limit of the objective, what sampling size (pixel scale) we should choose to "realize" such resolution limit?

Nyquist-Shannon sampling theorem

Exact reconstruction of a continuous-time baseband signal from its samples is *possible* if the signal is bandlimited and the sampling frequency is greater than *twice* the signal bandwidth.

Sampling rate is same as Rx

We got a flat signal

Sampling rate is same as Rx / 2

Seems good.

However, if you are unlucky (and normally, you ARE)

Sampling rate is the same as Rx / 3

Or

